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Abstract

This paper describes how gold nanoparticle nanoconstructs can enhance anti-cancer effects of 

lysosomal targeting aptamers in breast cancer cells. Nanoconstructs consisting of anti-HER2 

aptamer (human epidermal growth factor receptor 2, HApt) densely grafted on gold nanostars 

(AuNS) first targeted HER2 and then were internalized via HER2-mediated endocytosis. As 

incubation time increased, the nanoconstruct complexes were found in vesicular structures, 

starting from early endosomes to lysosomes as visualized by confocal fluorescence and differential 

interference contrast microscopy. Within the target organelle, lysosomes, HER2 was degraded by 

enzymes at low pH, which resulted in apoptosis. At specific time points related to the doubling 

time of the cancer cells, we found that accumulation of HER2-HApt-AuNS complexes in 

lysosomes, lysosomal activity, and lysosomal degradation of HER2 were positively correlated. 

Increased HER2 degradation by HApt-AuNS triggered cell death and cell cycle arrest in the 

G0/G1 phase inhibition of cell proliferation. This work shows how a perceived disadvantage of 

nanoparticle-based therapeutics—the inability of nanoconstructs to escape from vesicles and thus 

induce a biological response—can be overcome by both targeting lysosomes and exploiting 

lysosomal degradation of the biomarkers.
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Nanoparticle–based delivery systems can improve in vitro and in vivo efficacies of drugs by 

enhancing agent stability, internalization in cells, and circulation times.1, 2 In particular, gold 

nanoparticles (AuNPs) are advantageous in biomedical applications because the surfaces can 

be readily functionalized via gold-thiol chemistry, the core material is biocompatible, and 

the optical properties can be used to augment diagnostic and therapeutic applications.3–6 

Moreover, anisotropic NPs such as gold nanostars (AuNS) offer benefits over spherical Au 

colloids in the design of magnetic resonance imaging contrast agents and aptamer drug 

delivery systems.7–11 In particular, AuNS synthesized by reducing gold salt with Good’s 

buffer molecules (HEPES) are biocompatible, and thiolated ligands can be released from the 

tips using ultra-fast (fs) light pulses at near-infrared wavelengths.8, 9, 12, 13 The branched 

shape of AuNS also results in unique optical properties that enable prospects for imaging in 

biological conditions14 and high surfaceto-volume ratios compared to spherical AuNPs that 

can increase the loading capacity of drugs grafted to nano-carriers.15, 16

One major challenge in using AuNPs for intracellular diagnostics and therapeutics is the 

need to escape from vesicular compartments after cellular uptake.17–19 Typically, ligands 

that target cell-surface antigens and/or receptors are functionalized on the NP surface to 

deliver the drugs into cancer cells.1, 20, 21 As a result, NPs internalized via receptor-mediated 

endocytosis (RME) accumulate in late endosomes and lysosomes,1, 22 which may render 

drug molecules ineffective from degradation at low pH conditions and enzymes.17 In 

contrast, intracellular trafficking of nanoconstructs to targeted endosomes23 or 

lysosomes1, 24 can show enhancement of drug bioactivity. Recently, a DNA aptamer with 

anti-cancer effects derived from the degradation of human epidermal growth factor receptor 

2 (HER2) in lysosomes was reported for gastric cancer cells (N87) and tumors.25 Since 

HER2 is expressed 100-fold more on plasma membranes of cancer cells compared to normal 

cells, this transmembrane protein receptor has been pursued as a target.26–29 Anti-HER2 

aptamer (HApt) is the trimeric version (42 base pairs (bp)) of HER2-specific aptamer, 5’-

GCAGCGGTGTG GGG-3’ (14 bp) that was identified by SELEX.25 HApt has both 

targeting and therapeutic capabilities, can induce cross-linking of HER2 on cell surfaces, 

and can result in translocation of HER2 from the plasma membrane to cytoplasmic vesicles 

with proteases to digest HER2.25 Downregulation of HER2 can induce apoptosis by altering 

cell proliferation and downstream signaling pathways.30, 31
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Our hypothesis is that AuNS nanocarriers can increase delivery efficacy of HApt as well as 

result in increased transport to and degradation of HER2 in lysosomes. We aim to exploit a 

perceived disadvantage of inorganic nanocarriers—accumulation in vesicular compartments

— and use the endocytotic pathway as a means to enhance the response of the targeting drug 

molecule. Here we show that AuNS nanoconstructs can function as a model system to assess 

how targeted accumulation and target protein degradation in lysosomes can affect in vitro 
efficacy. We tested HER2 as the well-known biomarker and transmembrane protein in breast 

cancer cells as well as nanoconstructs of HApt grafted to AuNS (HApt-AuNS). We found 

that HApt-AuNS showed improved delivery and anti-cancer effects in targeted cancer cells 

over free HApt. In order to correlate progression in the endocytosis process with cellular 

response, we monitored the sub-cellular localization of HER2-HApt-AuNS complexes using 

confocal fluorescence microscopy and differential interference contrast microscopy. At the 

same time points, we measured accumulation of HER2-HApt-AuNS complexes in 

lysosomes, lysosomal activity, and lysosomal degradation of HER2 and discovered that all 

were positively correlated. Increased HER2 degradation by HApt-AuNS also triggered 

cancer cell death and cell cycle arrest in the G0/G1 phase inhibition of cell proliferation.

Results and Discussion

Surface-receptor targeting NPs are usually internalized in cancer cells by receptor-mediated 

endocytosis (RME),32 a process involving clathrin-mediated internalization of cargo 

destined for lysosomal compartments.1 Scheme 1 illustrates the proposed key binding and 

trafficking steps for HApt-AuNS in a HER2-expressing cancer cell. The polyvalent nature of 

HApt in the form of HApt-AuNS can induce cross-linking of HER2 on the cell surface. 

After binding to HER2, the nanoconstruct can sort HER2 to lysosomes where HER2 is 

degraded. The process is initiated when (1) HER2 receptors on the plasma membrane bind 

to HApt-AuNS nanoconstructs and then (2) HER2-HApt-AuNS complexes are encased by 

folding of the membrane into a vesicle and then enclosed within early endosomes. As they 

mature, (3) early endosomes become late endosomes that then (4) fuse with lysosomes. 

Within lysosomes, (5) HER2 bound to HApt-AuNS is degraded by proteases and acidic 

condition, which results in the suppression of cancer cell growth as well as cell death.

Physical, Chemical, Optical and In Vitro Characterization of Nanoconstructs

Figure 1a depicts a transmission electron microscopy (TEM) image of anisotropic AuNS, 

where the average size (tip-to-tip) was 40-nm. This NP size has been shown to be 

advantageous for receptor-mediated-endocytosis, where 40-nm AuNPs showed higher 

cellular uptake via HER2 receptors compared to 2-, 10-, and 70-nm AuNPs.33 Using our 

procedures for attaching other thiolated oligonucleoties,7,16 we designed HApt-AuNS 

nanoconstructs by grafting 5′-thiolated HApt (Figure 1b) on AuNS in citrate buffer at pH 3 

and characterized their physical and surface properties. As one measure of dense ligand 

loading on AuNS, we found that the localized surface plasmon (LSP) resonance of HApt-

AuNS shifted to longer wavelengths (~820 nm) compared to as-synthesized AuNS (~791 

nm) (Supporting Information Figure S1a). Using dynamic light scattering (DLS), we 

determined that the hydrodynamic size and charge of HApt-AuNS was 90 nm (compared to 

40 nm for bare AuNS) and that the surface charge was reduced to −8.05 mV in PBS solution 
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compared to −30 mV of as-synthesized AuNS (Supporting Information Table S1). This less 

negative value of surface charge can enhance the interaction of nanoconstructs with cells 

because of the reduced repulsive forces between the negatively charged plasma membrane 

and AuNS.34

Because anti-cancer effects depend on the quantity of drugs loaded on NPs,35 we determined 

the number of HApt on AuNS using a fluorescence assay with Cy3-labeled HApt and 

examined the structural integrity of HApt using circular dichroism (CD) spectroscopy 

(Methods). We estimated that the average number of HApt strands on each AuNS was 410 

± 10 (Supporting Information Table S1 and Figure S1b). Figure 1c indicates that free HApt 

had a linear structure with a strong positive band at 262 nm and weaker negative bands at 

240 nm and 210 nm. The linear structure of HApt (42 bp) is important for polyvalent 

binding with multiple HER2 since each 14 bp unit has some affinity to HER2.25 The CD 

spectrum of HApt-AuNS was similar to that of the free HApt molecule, which indicates that 

the HApt conformation was preserved on AuNS. In addition, we evaluated stability of HApt-

AuNS nanoconstructs under in vitro culture conditions since various serum proteins in fetal 

bovine serum (FBS)-containing media can destabilize targeting nanoconstructs by 

nonspecific protein absorption.36 We tested HApt-AuNS with different concentrations of 

FBS-media (10%, 50% and 100%) and did not observe significant aggregation (Supporting 

Information Figure S2).

We used SK-BR-3 (breast cancer cells) as an in vitro model system although previous work 

on HApt focused on gastric cancer cells25 because the occurrence of HER2 overexpression 

in breast cancers is four times higher than that in gastric cancers in patients.37 SK-BR-3 cells 

also show nearly the same expression levels of HER2 as N87.38 First, we investigated 

whether cellular uptake of HApt-AuNS depended on HER2 expression levels by comparing 

SK-BR-3 (HER2 positive) and normal breast cell lines (MCF-10A, HER2 negative) because 

HER2 levels in SK-BR-3 are 100-times higher than that in normal cell line37 (Supporting 

Information Figure S3). We found that there was 2.2-times higher amount of AuNS in SK-

BR-3 (6 × 106 AuNS/cell) compared to MCF-10A cells (2.7 × 106 AuNS/cell), which 

suggests that internalization of the nanoconstructs depended on the expression level of 

HER2. To check cytotoxicity of HApt-AuNS on normal cells, we identified the HApt-AuNS 

concentration for a lethal dose 50 (LD50) in cancer cells. 50% cell death was found for 2.5 

nM HApt-AuNS (HApt concentration: 1 µM) in SK-BR-3 cells (Supporting Information 

Figure S4). To determine whether the nanoconstruct concentration and treatment time were 

harmful to normal cells, we treated MCF-10A cells with HApt-AuNS for 24 h; however, no 

cell death was observed (Supporting Information Figure S3b and Figure S5). Cell viability 

of MCF-10A was maintained at greater than 90% even after 72-h treatment with HApt-

AuNS (Supporting Information Figure S5), which suggests that there are minimal adverse 

effects of the nanoconstructs even after multiple cell-division cycles.39 We also carried out a 

competition experiment by blocking HER2 with free HApt (1 µM) to confirm that HApt-

AuNS-induced cancer death was mediated by HER2. After 24-h incubation of cells with free 

HApt, cancer cell death after HApt-AuNS incubation for 24 h (2.5 nM) decreased ca. 20 % 

(Supporting Information Figure S6). This result supported that HApt-AuNS produced anti-

cancer effects in targeted cancer cells since binding to HER2 receptors led to HER2-

mediated endocytosis, which ultimately resulted in lysosomal degradation of HER2.25
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Comparison of Uptake for HApt-AuNS vs. free HApt

After confirming specificity of HApt-AuNS to HER2-breast cancer cells, we tested whether 

nanoconstructs showed increased HApt delivery efficiency. Confocal fluorescence 

microscopy images show that Cy3 signals from Cy3-HApt-AuNS in SK-BR-3 cells were 

much higher than that of free Cy3-HApt at the same Cy3-HApt concentration and 

integration time (Figure 2a). Moreover, the distribution of Cy3-HApt signals was distinct 

after 24 h, where the Cy3-HApt-AuNS appeared in clusters compared to the lower, diffuse 

signals of free Cy3-HApt. Based on clustering pattern, we hypothesized that nanoconstructs 

were in vesicular compartments after binding to HER2 on the cell membrane, and in 

particular, were in lysosomes since HApt was designed to traffic HER2 to this organelle.

To correlate nanoconstruct clustering with lysosome location, we stained lysosomes with 

LysoTracker Green DND-26 (Supporting Information); however, to avoid interference with 

lysosomal signals, we used Cy5 labels on HApt-AuNS. Figure 2b shows that the overlapping 

signals of Cy5 from HApt (red) with lysosomes (green) were higher for HApt-AuNS 

compared to free HApt, which suggests that AuNS can act as a nanocarrier for efficient 

delivery of aptamer into the targeted organelle.

In Vitro Therapeutic Response of HApt-AuNS vs. free HApt

Next, we tested whether improved delivery efficiency and localization of HApt-AuNS was 

correlated with a biological response of cancer cells. Figure 3a shows that cell viability of 

SK-BR-3 decreased ca. 50% after treatment with HApt-AuNS for 24 h compared to free 

HApt, where the latter did not result in anti-cancer effects even after treatment for 5 days 

(Supporting Information Figure S7). Cell viability decreased continuously as HApt-AuNS 

incubation time increased from 24 h to 72 h (24 h: 59%, 48 h: 48%, 72 h: 38%). Although 

the HApt-induced HER2 degradation process is likely the same for free HApt and HApt-

AuNS since the structure of HApt is preserved on the AuNS, the nanoconstruct showed 

much stronger anti-cancer effects in SK-BR-3. We hypothesize that dense packing and 

presentation of HApt on AuNS provides a means to bind to multiple HER2 receptors. 

Importantly, this multi-valency increases avidity to target cell surface receptors40 as well as 

induces the formation of receptor clusters on cell membranes.41,42 Therefore, HApt-AuNS 

could improve not only delivery efficiency of HApt to target cancer cells but also the 

possibility to accumulate more HER2 into lysosomes, which can result in enhanced anti-

cancer effects.

Since inhibition of cancer cell proliferation is from cell cycle arrest (cytostatic effects) and 

since cell death (cytotoxic effect) is induced by therapeutic agent,43,44 we investigated 

whether there was a correlation between cell cycle and cell viability at three different times 

points (8 h, 16 h and 24 h). Supporting information Figure S8 shows that after 16-h 

incubation with HApt-AuNS, cell death occurred. Importantly, this time point is close to the 

doubling time (the time to complete a cell cycle) of proliferating SK-BR-3 cells (15 h).45 To 

ensure robustness of the correlation as a function of time, we synchronized cell phase 

through serum deprivation in cell cycle analysis. We found that the transition of SK-BR-3 

cells into G0/G1 phase increased ca. 1.2 times after 24-h incubation (Methods). In addition, 

the average ratio of cells in the G0/G1 phase increased continuously as a function of time (0 
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h: 77.8 ± 4.5%, 8 h: 81.0 ± 7.2%, 16 h: 89.9 ±11.7%, 24 h: 91.9 ± 10.7%), suggesting that 

growth and proliferation in SK-BR-3 cells was inhibited.46

Since the biological activity of HApt is correlated with its ability to sort HER2 for lysosomal 

degradation,25 we evaluated HER2 expression levels using both western blot and 

fluorescence immunostaining (Supporting Information). Figure 3b indicates that the relative 

intensity of the HER2 band decreased ca. 2.4 times in HApt-AuNS-treated cells compared to 

free HApt-treated cells. Furthermore, fluorescence signals from HER2 markedly decreased 

when SK-BR-3 cells were incubated with HApt-AuNS (Figure 3c). These data support that 

the functionalization of HApt on AuNS can improve efficacy of HER2 degradation in cancer 

cells and that proliferation is decreased.

Since HER2 degradation occurs in lysosomes, we monitored subcellular locations of HER2-

HApt-AuNS complexes as a function of time. To determine when a majority of 

nanoconstructs accumulated in lysosomes via the endocytosis pathway, we identified 

locations of HApt-AuNS in cells at the same time points as that in cell viability and cell 

cycle studies (8 h, 16 h, 24 h) (Figure 4). First, we stained early endosomes and lysosomes 

of SK-BR-3 cells by immunostaining to visualize the vesicles. Lysosome-associated 

membrane glycoprotein 1 (LAMP-1) and early endosome antigen 1 (EEA-1) were stained 

by anti-LAMP-1 antibody and anti-EEA-1 antibody, respectively. Next, we used both 

confocal and differential interference contrast (DIC) microscopy to identify the HER2-

HApt-AuNS complexes based on Cy5-labeled HApt and Au contrast.47 Overlaying 

fluorescence and DIC images, we observed that as incubation time increased from 8 to 24 h, 

the HER2-HApt-AuNS complexes were farther inside cells (Figure 4 and Supporting 

Information Figure S9). At 8 h, the Cy5 signal from the clusters overlapped with endosomal 

signals in the fluorescence images, which indicated clusters were in the endosomes. 

Lysosomal staining using LAMP-1 indicated minimal formation of lysosomes at this time 

point. At later times, such as 16 h and 24 h, the fluorescence signals of lysosomes increased 

significantly and overlapped with the Cy5 label on HApt-AuNS (Figure 4). DIC images 

indicated that HER2-HApt-AuNS were also at similar intra-cellular locations (Supporting 

Information Figure S9). Almost no co-localization was observed between signals of 

endosomes and Cy5-HApt-AuNS at 16 h and 24 h. In addition, we confirmed that the 

anisotropic AuNS shape was preserved in cells by transmission electron microscopy at 

incubation times (Supporting Information Figure S10). Taken together, the results support 

our hypothesis that HER2-HApt-AuNS complexes transfer from endosomes to lysosomes 

after HApt-AuNS binds to HER2 on the plasma membrane (Scheme 1).

We compared the sizes of HER2-HApt-AuNS clusters in SK-BR-3 and MCF-10A through 

DIC imaging and image analysis. The average cluster size was ca. 2.2 times larger in SK-

BR-3 compared to MCF-10A after 24 h. Also, at 16 h, SK-BR-3 cells showed a significant 

increase in cluster size compared to the size at 8 h, while MCF-10A showed little increase 

(Supporting Information Figure S11). Hence, the clustering of HApt-AuNS in cells depends 

strongly on the cellular uptake via HER2-mediated endocytosis.
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Correlating Lysosomal Activity, HER2 Degradation, and Cell Death

During the endocytosis process, molecules transported to lysosomes48, 49 can be degraded 

by hydrolytic enzymes including proteases, nucleases, glycosidases, lipases, phospholipases, 

phosphatases, and sulfatases.50, 51 To determine whether the increased HER2 degradation 

and therapeutic efficacy from HApt-AuNS could be attributed to altered lysosomal activity, 

we tested whether degradation of HER2 would be affected if lysosomal function was 

compromised using chloroquine, a chemical that can passively diffuse into lysosomes and 

increase lysosomal pH, to disrupt lysosomal activity.52 Figure 5a indicates that cells treated 

with chloroquine and then subjected to HApt-AuNS showed a 26% increase in cell viability 

compared to cells treated with the same concentration of HApt-AuNS and no chloroquine. 

Hence, lysosomal function is important for the effects of HApt-AuNS in our in vitro model. 

Moreover, the results support that HER2-HApt-AuNS complexes were delivered into 

targeted lysosomes based on HER2-mediated endocytosis and that HER2 degradation 

resulted in cell death. To examine whether increased cell viability after blocking lysosomal 

function would result in decreased HER2 degradation, we measured HER2 expression levels 

from cell lysates (Methods). Figure 5b shows that the HER2 band intensity increased by ca. 

50% in cells with compromised lysosomal function; thus, HER2 is preserved (not degraded) 

even after cells were incubated with HApt-AuNS.

In addition, we found that volumetric changes of lysosomes were also related to lysosomal 

activity and the permeabilization of the lysosomal membrane. Based on literature,24, 51, 53 

we hypothesized that accumulation of nanoconstructs in lysosome would increase volume 

and thus further increase lysosomal activity. Up-regulation of lysosomal components such as 

proteases could accelerate HER2 degradation. Therefore, we tested whether accumulation of 

HER2-HApt-AuNS complexes in lysosomes affected lysosomal activity by comparing the 

levels of lysosomal marker enzymes.54 We measured acid phosphatase, an acid hydrolase 

commonly in lysosomes,55 from cell-cultured media and cell lysates after 24-h incubation of 

free HApt and HApt-AuNS. The assay demonstrated that HApt-AuNS induced a 1.5 (± 0.2) 

times increase of acid phosphatase levels in cells compared to free HApt. Notably, in media, 

the levels of acid phosphatase were nearly the same in free HApt treated cells (6.3 ± 1.3) and 

HApt-AuNS treated cells (5.1 ± 1.2) (Figure 5c). Therefore, accumulation of HER2-HApt-

AuNS in lysosomes can increase lysosomal activity besides the HApt-AuNS enhancing 

HER2 degradation compared to free HApt.

CONCLUSION

We demonstrated that internalization of HApt-AuNS nanoconstructs via endocytosis can 

improve the lysosomal targeting efficiency of a DNA aptamer. Accumulation of HER2-

HApt-AuNS complexes in lysosomes resulted in enhanced lysosomal activity that was also 

correlated to accelerated degradation of HER2. As a result, increased HER2 downregulation 

induced cell death by blocking the function of HER2 and decreased cell proliferation by 

altering signaling pathways for growth. Nanoparticle carriers provide potential for enhancing 

targeting efficiency of drugs and for degrading overexpressed surface receptors in 

lysosomes. Moreover, the optical properties of AuNS can be used as diagnostic to 

understand how HApt can function in cells by correlating DIC images of AuNS with the 
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fluorescence signals of HApt as well as endosomal and lysosomal labels. We anticipate that 

the anisotropic structure of AuNS can be applied in photothermal therapy to enhance anti-

cancer effects, especially since the localized surface plasmon resonance is in the near-

infrared. These results suggest a strategy to design efficacious nanoconstructs by exploiting 

their accumulation in lysosomes and by enhancing therapeutic efficacy of lysosome-

targeting drugs for preclinical studies.

METHODS

Preparation of HApt-AuNS Nanoconstruct

Anti-HER2 aptamer (42 bp) with disulfide modification at the 5′- end (5′-(C6-S-S-C6)-

GCA GCG GTG TGG GGG CAG CGG TGT GGG GGC AGC GGT GTG GGG-3′) was 

purchased from IDT DNA, Inc. HPLC-purified aptamer was dissolved in Millipore water 

(18.2 MΩ cm) to obtain 1-mM solutions. The disulfide bond was cleaved by adding 5 µL of 

5 mM tris(2-carboxyethyl) phosphine (TCEP) (Sigma Aldrich) to 5 µL of the 1 mM aptamer 

solution. After 30 min, the thiolated aptamer solution was added to 10 mL of 0.3 nM AuNS 

(final concentration ratio of DNA:AuNS =1600:1) and left overnight to form the 

nanoconstruct (HApt-AuNS).

Tissue Culture for Cancer and Control Cell Lines

The human breast carcinoma SK-BR-3 cell line (ATCC) was maintained in McCoy’s 

medium (Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco). The human 

epithelial cell line MCF-10A (ATCC) was maintained in DMEM/F12 medium (Gibco) 

supplement with 10% horse serum (Invitrogen), 20 ng/mL epidermal growth factor (EGF) 

(Sigma Aldrich), 0.5 mg/mL hydrocortisone (Sigma Aldrich), 100 ng/mL cholera toxins 

(Sigma Aldrich), and 10 µg/mL insulin (Sigma Aldrich). The cells were cultured at 37 C 

with 5% CO2 and plated in T25 flasks (VWR) with aforementioned media.

Cell Viability Measurement

After incubation of cells (1×104 cells/ml) with HApt-AuNS in a 96-well plate, the cell 

viability was measured using MTS assay solution (Promega). The absorbance of the reacted 

solution at 490 nm was recoded by a 96-well plate reader (Multiskan spectrum, Thermo 

Scientific).

Quantifying Number of HApt Strands on AuNS

Cy3-labeled aptamer 5′-(C6-S-S-C6)-Cy3-GCA GCG GTG TGG GGG CAG CGG TGT 

GGG GGC AGC GGT GTG GGG-3′) was used to estimate the number of aptamers on each 

particle. Attachment of Cy5-HAptt and Cy3-HApt to the AuNS followed the same 

procedure as described previously. We centrifuged 500 µL of Cy3-labeled HApt-AuNS 

(Cy3-Apt-AuNS) at 13,500 rpm for 11 min. The supernatant was removed, and the 

nanoconstructs were suspended in 1 mL of 50 mM HEPES buffer. This process was repeated 

twice to eliminate unbound Cy3-HApt. Fluorescence-labeled nanoconstruct pellets were 

treated with 50 µL of 25 mM potassium cyanide (KCN) overnight to dissolve the Au core of 

nanoconstructs and release Cy3-HApt. Cy3 fluorescence intensity in KCN solution was 

measured using a NanoDrop Spectrophotometer, and the concentration of HApt was 
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determined based on the intensity of the Cy3 signal. The number of HApt was calculated by 

multiply the concentration of HApt with solution volume. Finally, the number of HApt was 

divided by total number of AuNS in 1 mL. This fluorescent assay indicated that 

approximately 410 strands of HApt were conjugated on a single AuNS.

Circular Dichroism (CD) Anlaysis

The structure of free HApt and HApt-AuNS under same buffer condition (50 mM HEPES 

containing 10 mM NaCl) was analyzed by CD spectrometer (JASCO). We used a 1-mm path 

length cuvette, which allowed a small volume of concentrated nanoconstructs solution to be 

measured. The CD spectra of nanoconstructs were also subtracted from background CD of 

AuNS in same buffer.

Quantification of Nanoconstruct Uptake in Cells

Cells were plated in 24-well plates (106 cells/well) for 24 h and then 2.5 nM HApt-AuNS in 

growth media was added to each well. The cells were incubated with the nanoconstructs for 

24 h at 37 °C in 5% CO2 environment. After incubation, excess nanoconstructs were 

removed from the wells, and the cells were washed twice with ice cold PBS (Gibco). The 

cells were then harvested and suspended in 100 µL PBS. The cells were counted using a 

hemocytometer before being digested for 4 h at 75 °C in acid mixture containing 200 µL of 

30% HCl (Sigma-Aldrich) and 86 µL of 70% HNO3 (SigmaAldrich). After complete 

digestion of the AuNS, the solution was diluted with Millipore water to a final volume of 6 

mL. The Au content was measured using ICP-MS.

Confocal and DIC Imaging of Cy3 or Cy5-Labeled Nanoconstructs

SK-BR-3 was plated on coverslips (BD Biosciences) (104 cells/coverslip) and cultured in 

their respective complete growth media. After 24 h of cell growth (37 °C, 5% CO2), the 

media was replaced with fresh growth media containing 2.5 nM Cy3- or Cy5-labeled 

nanoconstructs. Cells were incubated with the nanoconstructs for 8, 16 and 24 h, and then 

washed three times with PBS. The cells were fixed with 4% paraformaldehyde (Sigma 

Aldrich) for 20 min followed by three washes with PBS. A drop of ProLong Gold Antifade 

reagent containing DAPI (Invitrogen) was used to mount each coverslip on a glass slide for 

confocal fluorescence and DIC imaging. Confocal imaging was performed on an inverted 

Zeiss Axio Observer Z1 confocal microscope with a 40x objective and Zen acquisition 

software and DIC imaging was performed by inverted Nikon Eclipse TE2000-E microscope.

Immunofluorescence Staining

Cells were plated on coverslips (BD Biosciences) (104 cells/coverslip) and cultured in their 

respective complete growth media. After treatment with HApt-AuNS, the coverslips were 

washed with PBS twice to remove all residual growth media. Cells were fixed with 4% 

paraformaldehyde for 10 min and permeabilized with 0.1% Triton X100 for 5 min. The 

coverslips containing fixed cells were then blocked with solution containing 1% BSA and 

5% normal donkey serum for 1 h at room temperature. The cells were then incubated at 4 °C 

overnight with primary antibodies (1:200) in blocking solution (mouse anti human LAMP-1 

antibody (Santa Cruz) and goat anti human EEA-1 antibody (Santa Cruz)). After overnight 
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incubation, the coverslips were washed 6 times with PBS for a total of 1 h. Secondary 

antibodies in blocking solution were incubated with the coverslips for 1 h at room 

temperature (donkey anti goat IgG Alexa 488 and donkey anti mouse IgG Alexa 568). The 

coverslips were washed for 1 h with PBS, and cell nuclei were counterstained with DAPI. 

The coverslips were then mounted on glass slides using gold-antifade mounting media 

(Invitrogen).

Staining of Cellular Structures

Cells were plated on coverslips (BD Biosciences) (104 cells/coverslip) and cultured in their 

respective complete growth media. After cell incubation with 2.5 nM HApt-AuNS, the 

medium removed from the dish and added the pre-warmed (37 °C) Lysotracker green 

DND26 (Invitrogen)-containing medium. The cells were incubated for 30 minutes under 

growth conditions. Then, cells were fixed with 4% paraformaldehyde. A drop of ProLong 

Gold Antifade reagent containing DAPI (Invitrogen) was used to mount each coverslip on a 

glass slide for confocal fluorescence and DIC imaging.

Immunoblotting of HER2

SK-BR-3 cells (5 × 105 cells/mL) were cultured on 6-well plate in complete medium for 24 

h. Then, 2.5 nM HApt-AuNS and 1 µM free HApt in culture media was added to each well 

and incubated for 24 h. Cells were then collected and transferred to microcentrifuge tubes. 

For cell lysis, RIPA buffer (Pierce) was added and incubated for 30 min on ice. The protein 

amount was estimated by BCA assay (Bio-Rad). Next, an equal volume of sample buffer 

(125 mM Tris pH 6.8, 4% SDS, 10% glycerol, 0.006% bromophenol blue, and 1.8% ss-

mercaptoethanol) added to all samples, and the resulting solution was boiled for 3–5 min. A 

15-µg amount of total proteins from cells was loaded in each well of a protein precast gel 

(Bio-Rad). After electrophoresis at 120 V and 60 min, the proteins were transferred from the 

gel to a PVDF membrane at 1 amp constant current for 1 h in transfer buffer (Thermo 

Fisher). The blot from the transfer apparatus was removed and immediately placed into 

blocking buffer (5% nonfat dry milk, 10 mM Tris pH 7.5, 100 mM NaCl, and 0.1% Tween 

20). After blocking for 1 h at room temperature, the membrane was incubated with primary 

anti-HER2 antibody (mouse) and anti-β actin (mouse) (Santa Cruz) overnight at 4 °C. After 

incubation with primary antibody solution, the membrane was twice washed (10 mM Tris 

pH 7.5, 100 mM NaCl, and 0.1% Tween 20). Then, the membrane was incubated with 

alkaline phosphatase (AP)-conjugate anti-mouse IgG (secondary antibody) diluted with 5% 

nonfat dry milk solution at room temperature. After 1-h incubation, the antibody solution 

removed and the membrane was washed three times by washing buffer (10 mM Tris pH 7.5, 

100 mM NaCl, 0.1% Tween 20). Finally, the band signal of proteins on membrane was 

developed by enhanced chemifluorescence substrate (GE Healthcare) and visualized by 

Typhoon PhosphorImager (GE Healthcare). The amount of each protein in the blots was 

determined by counting the total number of pixels in each band (integrated density value) 

with ImageJ.

Chloroquine treatment

SK-BR-3 on 96-well and 6-well was incubated with culture media containing 0.01 µM of 

chloroquine (Chl) for 24h. After treatment of cells with Chl, 2.5 nM-HApt-AuNS added into 
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cells on well and incubated with cells. After 24h incubation, the media discarded and 100-

µL new media and MTS assay solution added into 96 well for test the viability. For HER2 

detection, cells were harvested and were lysed. Immunoblotting to HER2 followed the same 

procedure as described previously.

Acid Phosphatase Assay

SK-BR-3 on 96-well was incubated with 1 µM of free HApt and 2.5 nM-HApt-AuNS 

nanoconstruct for 24 h. The substrate solution, 4-nitrophenyl phosphate (Sigma Aldrich) was 

dissolved in 5 mL of the citrate buffer solution and equilibrated to 37 °C before using. 50-µL 

substrate solution mixed with 50 µL of cell lysate sample. A blank reaction (50 µL of 

substrate solution with 50 µL citrate buffer) was run in parallel to account for the 4-

nitrophenyl phosphate that hydrolyzes spontaneously during the incubation time. For a 

positive control, 50 µL of substrate solution was incubated with 48 µL citrate buffer and 2 

µL of acid phosphatase enzymes. The 96-well plate mixed using a horizontal shaker and 

incubated the plate for 10 min at 37 °C. The reactions was stopped by adding 0.2 mL of 

0.5N NaOH solution to the wells. The absorption of colored solution was measured at 405 

nm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. HApt-AuNS nanoconstruct characterization
(a)TEM image of as-synthesized AuNS. (b) Sequence information of HApt. The color-

coding means one unit (14 bp) of trimeric version of HApt (42 bp). (c) CD-spectra of free 

HApt and HApt grafted on AuNS.
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Figure 2. In vitro distribution of fluorophore-labeled HApt-AuNS showed clustering
(a) Cy3-HApt showed higher uptake and clustering when grafted to AuNS in SK-BR-3. (b) 
Confocal fluorescence images of Cy5-HApt-AuNS, free Cy5-HApt and lysosomes in 

SKBR-3 after 24-h treatment times. The locations of the nanoconstructs overlapped with 

those of the lysosomes. In all images, the blue color corresponds to DAPI-stained nuclei. 

The representative images were collected from fluorescence images of three independent 

experiments (n=3).
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Figure 3. HApt-AuNS shows greater anti-cancer effects compared to free HApt
(a) Cell viability over 72 h for SK-BR-3 cells treated with HApt-AuNS and free HApt. Error 

bars were from twelve independent experiments. The concentration of HApt-AuNS was 2.5 

nM, the same HApt concentration as free HApt (1 µM). Error bars represent seven 

independent experiments (n=7). (b) Protein detection of HER2 and β-actin using western 

blot after 24-h treatment. HApt-AuNS had an intensity of 59.44 (± 14.88) while free HApt 

has a band intensity of 142.27 (± 12.96). The average intensity of three gel images was 

statistically analyzed by measuring the total intensity across the same area in each image. (c) 
HER2 stained by FITC-labeled anti-HER2 antibody is less after HApt-AuNS incubation 

compared to free HApt. In all images, the green signal represents HER2, and blue signal is 

the nucleus. Cells were incubated with 1-µM HApt-AuNS (2.5 nM) or 1 µM free HApt. The 

representative images were collected from fluorescence images of three independent 

experiments (n=3).
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Figure 4. HApt-AuNS cluster sizes within lysosomes show a time-dependent increase
Confocal fluorescence images of SK-BR-3 cells at 8, 16, and 24-h treatments. Cy5-HApt-

AuNS were red and immunostained endosomes with EEA-1 antibody were magenta and 

lysosomes with LAMP-1 antibody were green. The scale bars in all images are 10 µm. The 

representative images were collected from fluorescence images of two independent 

experiments (n=2).
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Figure 5. Lysosomal function is involved in anti-cancer effects of HApt-AuNS
(a) Cell viability (MTS assay) after 24-h treatment of SK-BR-3 cells with HApt-AuNS (2.5 

nM) and chloroquine (Chl). Error bars from twelve independent experiments. (b) HER2 

analyzed by western blot. The average intensity of the band for HApt-AuNS was 63.31 

(± 1.61) and that for HApt-AuNS with Chl was 120.05 (± 22.39). The standard deviation 

was obtained from three experiments. (c) Acid phosphatase assay indicates enzyme activity 

after 24-h incubation of cells with free HApt (1 µM) and HApt-AuNS (2.5 nM). Error bars 

from eight independent experiments.
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Scheme 1. Internalization process of HApt-AuNS in HER2-overexpressed cancer cells
HApt-AuNS binds to HER2 on the plasma membrane and then the HER2-nanoconstruct 

complex internalizes in cell by endocytosis. HER2-HApt-AuNS is transported from 

endosomes to lysosomes where HER2 is degraded and which induces cell death. Adapted 

from reference number 51.
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